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If a very large number of atoms are 
involved, as in the case of a real 
solid, then the energy levels will lie 
on a quasi- con:nuous scale and one 
therefore speaks of energy bands. 
The broadening of the band depends 
on the overlap of the wavefunc:ons 
concerned. Thus for the deep lying 
levels the broadening is small, and 
these ``core levels'' retain their 
atomic shell-like character even in 
the solid. For the highest occupied 
levels, on the other hand, the 
broadening is so large that the s-, p-
and where present, d-levels merge 
into a single band. 

From Bonds to Bands 
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Free Electron Gas (FEG) 
Why is condensed matter so transparent to conduction electrons? 
The answer to the question contains two parts: (a) A conduction 
electron is not deflected by ion cores arranged on a periodic lattice 
because matter waves can propagate freely in a periodic structure. 
(b) A conduction electron is scattered only infrequently by other 
conduction electrons. This property is a consequence of the Pauli 
exclusion principle. 

By a free electron Fermi gas, we 
shall mean a gas of free electrons 
subject to the Pauli principle. 

Na+:	1s22s22p6



Free Electron Gas in One Dimension

deflected by ion cores arranged on a periodic lattice because matter waves can
propagate freely in a periodic structure, as a consequence of the mathematics
treated in the following chapter. (b) A conduction electron is scattered only in-
frequently by other conduction electrons. This property is a consequence of
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a
gas of free electrons subject to the Pauli principle.

ENERGY LEVELS IN ONE DIMENSION

Consider a free electron gas in one dimension, taking account of quantum
theory and of the Pauli principle. An electron of mass m is confined to a length L
by infinite barriers (Fig. 2). The wavefunction !n(x) of the electron is a solu-
tion of the Schrödinger equation with the neglect of potential energy
we have where p is the momentum. In quantum theory p may be
represented by the operator !i d/dx, so that

(1)

where "n is the energy of the electron in the orbital.
We use the term orbital to denote a solution of the wave equation for a

system of only one electron. The term allows us to distinguish between an
exact quantum state of the wave equation of a system of N interacting elec-
trons and an approximate quantum state which we construct by assigning the
N electrons to N different orbitals, where each orbital is a solution of a wave
equation for one electron. The orbital model is exact only if there are no inter-
actions between electrons.

The boundary conditions are !n(0) " 0; !n(L) " 0, as imposed by the infi-
nite potential energy barriers. They are satisfied if the wavefunction is sinelike
with an integral number n of half-wavelengths between 0 and L:

(2)

where A is a constant. We see that (2) is a solution of (1), because

whence the energy "n is given by

(3)

We want to accommodate N electrons on the line. According to the Pauli
exclusion principle, no two electrons can have all their quantum numbers
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whence the energy ϵn is given by

The boundary conditions are 

deflected by ion cores arranged on a periodic lattice because matter waves can
propagate freely in a periodic structure, as a consequence of the mathematics
treated in the following chapter. (b) A conduction electron is scattered only in-
frequently by other conduction electrons. This property is a consequence of
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a
gas of free electrons subject to the Pauli principle.

ENERGY LEVELS IN ONE DIMENSION

Consider a free electron gas in one dimension, taking account of quantum
theory and of the Pauli principle. An electron of mass m is confined to a length L
by infinite barriers (Fig. 2). The wavefunction !n(x) of the electron is a solu-
tion of the Schrödinger equation with the neglect of potential energy
we have where p is the momentum. In quantum theory p may be
represented by the operator !i d/dx, so that

(1)

where "n is the energy of the electron in the orbital.
We use the term orbital to denote a solution of the wave equation for a

system of only one electron. The term allows us to distinguish between an
exact quantum state of the wave equation of a system of N interacting elec-
trons and an approximate quantum state which we construct by assigning the
N electrons to N different orbitals, where each orbital is a solution of a wave
equation for one electron. The orbital model is exact only if there are no inter-
actions between electrons.

The boundary conditions are !n(0) " 0; !n(L) " 0, as imposed by the infi-
nite potential energy barriers. They are satisfied if the wavefunction is sinelike
with an integral number n of half-wavelengths between 0 and L:

(2)

where A is a constant. We see that (2) is a solution of (1), because

whence the energy "n is given by

(3)

We want to accommodate N electrons on the line. According to the Pauli
exclusion principle, no two electrons can have all their quantum numbers

"n " !2

2m !n#
L "2

 .

d!n

dx
 " A !n#

L " cos !n#
L  x" ;   

d2!n

dx2  " !A !n#
L "2

  sin !n#
L  x" ,

!n " A sin !2#
$n

 x" ;   1
2 

n$n " L ,

!!n " ! !2

2m 

d2!n

dx2  " "n!n ,

!
! " p2/2m,

!! " "!;

134

ch06.qxd  8/13/04  4:20 PM  Page 134

In a linear solid the quantum numbers of a conduction electron orbital are
n and ms, where n is any positive integer and the magnetic quantum
number ms = ± 1/2 , according to spin orientation.



Fermi Energy and Fermi-Dirac Distribution 
The Fermi energy ϵF is defined as the energy of the topmost filled level in
the ground state of the N electron system. With n = nF we have in one
dimension:

identical. That is, each orbital can be occupied by at most one electron. This
applies to electrons in atoms, molecules, or solids.

In a linear solid the quantum numbers of a conduction electron orbital are
n and ms, where n is any positive integer and the magnetic quantum number
ms ! " , according to spin orientation. A pair of orbitals labeled by the quan-
tum number n can accommodate two electrons, one with spin up and one with
spin down.

If there are six electrons, then in the ground state of the system the filled
orbitals are those given in the table:

Electron Electron 
n ms occupancy n ms occupancy

1 ↑ 1 3 ↑ 1
1 ↓ 1 3 ↓ 1
2 ↑ 1 4 ↑ 0
2 ↓ 1 4 ↓ 0

More than one orbital may have the same energy. The number of orbitals with
the same energy is called the degeneracy.

Let nF denote the topmost filled energy level, where we start filling the
levels from the bottom (n ! 1) and continue filling higher levels with elec-
trons until all N electrons are accommodated. It is convenient to suppose that
N is an even number. The condition 2nF ! N determines nF, the value of n for
the uppermost filled level.

The Fermi energy !F is defined as the energy of the topmost filled level
in the ground state of the N electron system. By (3) with n ! nF we have in one
dimension:

(4)!F ! !2

2m !nF"
L "2

 ! !2

2m !N"
2L"

2
 .

1
2
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Fermi-Dirac distribu2on gives the probability that an orbital at energy ϵ 
will be occupied in an ideal electron gas in thermal equilibrium:

EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION

The ground state is the state of the N electron system at absolute zero.
What happens as the temperature is increased? This is a standard problem in
elementary statistical mechanics, and the solution is given by the Fermi-Dirac
distribution function (Appendix D and TP, Chapter 7).

The kinetic energy of the electron gas increases as the temperature is in-
creased: some energy levels are occupied which were vacant at absolute zero,
and some levels are vacant which were occupied at absolute zero (Fig. 3). The
Fermi-Dirac distribution gives the probability that an orbital at energy !
will be occupied in an ideal electron gas in thermal equilibrium:

(5)

The quantity " is a function of the temperature; " is to be chosen for the
particular problem in such a way that the total number of particles in the system
comes out correctly—that is, equal to N. At absolute zero " ! !F, because in the
limit T → 0 the function f(!) changes discontinuously from the value 1 (filled) to
the value 0 (empty) at ! ! !F ! ". At all temperatures f(!) is equal to when 
! ! ", for then the denominator of (5) has the value 2.

1
2

f (!) ! 

1
exp[(! " ")/kBT] # 1

 .
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Figure 3 Fermi-Dirac distribution function (5) at the various labelled temperatures, for 
TF ! !F/kB ! 50,000 K. The results apply to a gas in three dimensions. The total number of parti-
cles is constant, independent of temperature. The chemical potential " at each temperature may
be read off the graph as the energy at which f ! 0.5.
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At normal and low temperatures

μ ≃ ϵF



Free Electron Gas in Three Dimension

Applying the periodic boundary condition for x, y, and z,

We then have a plane wavefunction:

The free-par:cle Schrödinger equa:on in three dimensions is

The quantity ! is the chemical potential (TP, Chapter 5), and we see
that at absolute zero the chemical potential is equal to the Fermi energy, de-
fined as the energy of the topmost filled orbital at absolute zero.

The high energy tail of the distribution is that part for which " ! ! " kBT;
here the exponential term is dominant in the denominator of (5), so 
that f(") ! exp[(! ! ")/kBT]. This limit is called the Boltzmann or Maxwell
distribution.

FREE ELECTRON GAS IN THREE DIMENSIONS

The free-particle Schrödinger equation in three dimensions is

(6)

If the electrons are confined to a cube of edge L, the wavefunction is the
standing wave

(7)

where nx, ny, nz are positive integers. The origin is at one corner of the cube.
It is convenient to introduce wavefunctions that satisfy periodic boundary

conditions, as we did for phonons in Chapter 5. We now require the wavefunc-
tions to be periodic in x, y, z with period L. Thus

(8)

and similarly for the y and z coordinates. Wavefunctions satisfying the free-
particle Schrödinger equation and the periodicity condition are of the form of
a traveling plane wave:

(9)

provided that the components of the wavevector k satisfy

(10)

and similarly for ky and kz.
Any component of k of the form 2n#/L will satisfy the periodicity 

condition over a length L, where n is a positive or negative integer. The com-
ponents of k are the quantum numbers of the problem, along with the 
quantum number ms for the spin direction. We confirm that these values of kx

satisfy (8), for

(11)  # exp(i2n#x/L) exp(i2n#) # exp(i2n#x/L) # exp(ikx 

x) .
exp[ikx(x $ L)]  # exp[i2n#(x $ L)/L]

kx # 0 ;  !2#
L  ;  !4#

L  ;  . . . ,

$k(r) # exp (ik ! r) ,

$(x $ L, y, z) # $(x, y, z) ,

$n(r) # A sin (#nxx/L) sin (#nyy/L) sin (#nzz/L) ,

! "2

2m " %2

%x2 $ %2

%y2 $ %2

%z2# $k(r) # "k $k(r) .
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If the electrons are confined to a cube of edge L, the wavefunction is 
the standing wave 
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! "2

2m " %2
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where nx, ny, nz are posi:ve integers. The origin is at one corner of the cube.

The quantity ! is the chemical potential (TP, Chapter 5), and we see
that at absolute zero the chemical potential is equal to the Fermi energy, de-
fined as the energy of the topmost filled orbital at absolute zero.

The high energy tail of the distribution is that part for which " ! ! " kBT;
here the exponential term is dominant in the denominator of (5), so 
that f(") ! exp[(! ! ")/kBT]. This limit is called the Boltzmann or Maxwell
distribution.

FREE ELECTRON GAS IN THREE DIMENSIONS

The free-particle Schrödinger equation in three dimensions is

(6)

If the electrons are confined to a cube of edge L, the wavefunction is the
standing wave

(7)

where nx, ny, nz are positive integers. The origin is at one corner of the cube.
It is convenient to introduce wavefunctions that satisfy periodic boundary

conditions, as we did for phonons in Chapter 5. We now require the wavefunc-
tions to be periodic in x, y, z with period L. Thus

(8)

and similarly for the y and z coordinates. Wavefunctions satisfying the free-
particle Schrödinger equation and the periodicity condition are of the form of
a traveling plane wave:
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provided that the components of the wavevector k satisfy
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and similarly for ky and kz.
Any component of k of the form 2n#/L will satisfy the periodicity 

condition over a length L, where n is a positive or negative integer. The com-
ponents of k are the quantum numbers of the problem, along with the 
quantum number ms for the spin direction. We confirm that these values of kx

satisfy (8), for
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fined as the energy of the topmost filled orbital at absolute zero.
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provided that the components of the wavevector k sa:sfy

and similarly for ky and kz.



The energy ϵk of the orbital with wavevector k:

Then

and

On substituting (9) in (6) we have the energy !k of the orbital with
wavevector k:

(12)

The magnitude k of the wavevector is related to the wavelength " by k ! 2#/".
The linear momentum p may be represented in quantum mechanics by

the operator p ! "i , whence for the orbital (9)

(13)

so that the plane wave $k is an eigenfunction of the linear momentum with the
eigenvalue . The particle velocity in the orbital k is given by 

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space. The energy at the sur-
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface
have a magnitude kF such that (Fig. 4):

(14)

From (10) we see that there is one allowed wavevector—that is, one dis-
tinct triplet of quantum numbers kx, ky, kz—for the volume element (2#/L)3 of
k space. Thus in the sphere of volume the total number of orbitals is

(15)

where the factor 2 on the left comes from the two allowed values of the spin
quantum number for each allowed value of k. Then (15) gives

(16)

which depends only on the particle concentration.

kF ! !3#2N
V "1/3

 ,

2 ! 
4#kF

3#3
(2##L)3 ! 

V
3#2 kF

3
 ! N ,

4#kF
3/3

!F ! !2

2m k2
F .

v ! !k/m.!k

p$k(r) ! "i!!$k(r) ! !k$k(r) ,

!$

!k ! 

!2

2m k2
 ! 

!2

2m (kx
2
 % ky

2
 % kz

2) .
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kz
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at energy

!F

Figure 4 In the ground state of a system of N free
electrons the occupied orbitals of the system fill a
sphere of radius kF, where is the energy of
an electron having a wavevector kF.

!F ! !2kF
2/2m
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On substituting (9) in (6) we have the energy !k of the orbital with
wavevector k:

(12)

The magnitude k of the wavevector is related to the wavelength " by k ! 2#/".
The linear momentum p may be represented in quantum mechanics by

the operator p ! "i , whence for the orbital (9)
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eigenvalue . The particle velocity in the orbital k is given by 

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space. The energy at the sur-
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface
have a magnitude kF such that (Fig. 4):
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k space. Thus in the sphere of volume the total number of orbitals is
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Using (14) and (16),

(17)

This relates the Fermi energy to the electron concentration N/V. The electron
velocity vF at the Fermi surface is

(18)

Calculated values of kF, vF, and !F are given in Table 1 for selected metals; also
given are values of the quantity TF which is defined as !F/kB. (The quantity TF

has nothing to do with the temperature of the electron gas!)
We now find an expression for the number of orbitals per unit energy

range, D(!), called the density of states.1 We use (17) to obtain the total
number of orbitals of energy !!:

(19)

so that the density of states (Fig. 5) is

(20)D(!) ! dN
d!

 " V
2"2 ! !2m

"2 "3/2
 ! !1/2 .

N " V
3"2

 !2m!

"2 "3/2
 ,

vF " !"kF
m " " !"

m" !3"2N
V "1/3

 .

!F " 

"2

2m !3"2N
V "2/3

 .

1Strictly, D(!) is the density of one-particle states, or density of orbitals.
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Figure 5 Density of single-particle states as a func-
tion of energy, for a free electron gas in three dimen-
sions. The dashed curve represents the density 
f (!, T)D(!) of filled orbitals at a finite temperature,
but such that kBT is small in comparison with !F. The
shaded area represents the filled orbitals at absolute
zero. The average energy is increased when the tem-
perature is increased from 0 to T, for electrons are
thermally excited from region 1 to region 2.
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On substituting (9) in (6) we have the energy !k of the orbital with
wavevector k:
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The magnitude k of the wavevector is related to the wavelength " by k ! 2#/".
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eigenvalue . The particle velocity in the orbital k is given by 
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may be represented as points inside a sphere in k space. The energy at the sur-
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface
have a magnitude kF such that (Fig. 4):
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tinct triplet of quantum numbers kx, ky, kz—for the volume element (2#/L)3 of
k space. Thus in the sphere of volume the total number of orbitals is
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Density of States (DOS)

since

The density of states is
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This result may be expressed more simply by comparing (19) and (20) to obtain
at !

(21)

Within a factor of the order of unity, the number of orbitals per unit energy
range at the Fermi energy is the total number of conduction electrons divided
by the Fermi energy, just as we would expect.

HEAT CAPACITY OF THE ELECTRON GAS

The question that caused the greatest difficulty in the early development
of the electron theory of metals concerns the heat capacity of the conduction
electrons. Classical statistical mechanics predicts that a free particle should
have a heat capacity of kB, where kB is the Boltzmann constant. If N atoms
each give one valence electron to the electron gas, and the electrons are freely
mobile, then the electronic contribution to the heat capacity should be NkB,
just as for the atoms of a monatomic gas. But the observed electronic contribu-
tion at room temperature is usually less than 0.01 of this value.

This important discrepancy distracted the early workers, such as Lorentz:
How can the electrons participate in electrical conduction processes as if they
were mobile, while not contributing to the heat capacity? The question was
answered only upon the discovery of the Pauli exclusion principle and the
Fermi distribution function. Fermi found the correct result and he wrote,
“One recognizes that the specific heat vanishes at absolute zero and that at low
temperatures it is proportional to the absolute temperature.”

When we heat the specimen from absolute zero, not every electron gains
an energy !kBT as expected classically, but only those electrons in orbitals
within an energy range kBT of the Fermi level are excited thermally, as in 
Fig. 5. This gives an immediate qualitative solution to the problem of the heat
capacity of the conduction electron gas. If N is the total number of electrons,
only a fraction of the order of T/TF can be excited thermally at temperature T,
because only these lie within an energy range of the order of kBT of the top of
the energy distribution.

Each of these NT/TF electrons has a thermal energy of the order of kBT.
The total electronic thermal kinetic energy U is of the order of

(22)

The electronic heat capacity is given by

(23)

and is directly proportional to T, in agreement with the experimental 
results discussed in the following section. At room temperature Cel is smaller

Cel ! "U/"T " NkB(T/TF)
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Using (14) and (16),

(17)

This relates the Fermi energy to the electron concentration N/V. The electron
velocity vF at the Fermi surface is

(18)

Calculated values of kF, vF, and !F are given in Table 1 for selected metals; also
given are values of the quantity TF which is defined as !F/kB. (The quantity TF

has nothing to do with the temperature of the electron gas!)
We now find an expression for the number of orbitals per unit energy

range, D(!), called the density of states.1 We use (17) to obtain the total
number of orbitals of energy !!:
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so that the density of states (Fig. 5) is
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Figure 5 Density of single-particle states as a func-
tion of energy, for a free electron gas in three dimen-
sions. The dashed curve represents the density 
f (!, T)D(!) of filled orbitals at a finite temperature,
but such that kBT is small in comparison with !F. The
shaded area represents the filled orbitals at absolute
zero. The average energy is increased when the tem-
perature is increased from 0 to T, for electrons are
thermally excited from region 1 to region 2.
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given are values of the quantity TF which is defined as !F/kB. (The quantity TF
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We now find an expression for the number of orbitals per unit energy

range, D(!), called the density of states.1 We use (17) to obtain the total
number of orbitals of energy !!:

(19)

so that the density of states (Fig. 5) is

(20)D(!) ! dN
d!

 " V
2"2 ! !2m

"2 "3/2
 ! !1/2 .

N " V
3"2

 !2m!

"2 "3/2
 ,

vF " !"kF
m " " !"

m" !3"2N
V "1/3

 .

!F " 

"2

2m !3"2N
V "2/3

 .

1Strictly, D(!) is the density of one-particle states, or density of orbitals.
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Figure 5 Density of single-particle states as a func-
tion of energy, for a free electron gas in three dimen-
sions. The dashed curve represents the density 
f (!, T)D(!) of filled orbitals at a finite temperature,
but such that kBT is small in comparison with !F. The
shaded area represents the filled orbitals at absolute
zero. The average energy is increased when the tem-
perature is increased from 0 to T, for electrons are
thermally excited from region 1 to region 2.
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Near Free Electron Model
Consider a linear solid of lattice a and put the magnitude of U aside

By the periodicity alone, in 1D the Bragg reflections will occur at
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The set of planes that are the perpendicular bisectors of the reciprocal 
lattice vectors is of general importance in the theory of wave propagation in 
crystals: A wave whose wavevector drawn from the origin terminates on any of
these planes will satisfy the condition for diffraction. These planes divide the
Fourier space of the crystal into fragments, as shown in Fig. 9b for a square
lattice. The central square is a primitive cell of the reciprocal lattice. It is a
Wigner-Seitz cell of the reciprocal lattice.

The central cell in the reciprocal lattice is of special importance in the the-
ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal lattice vectors drawn from the origin. Examples are
shown in Figs. 10 and 11.

Historically, Brillouin zones are not part of the language of x-ray diffrac-
tion analysis of crystal structures, but the zones are an essential part of the
analysis of the electronic energy-band structure of crystals.

Reciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as
the set

(27a)a1 ! ax̂ ;   a2 ! aŷ ;   a3 ! aẑ .
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Figure 9a  Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lattice
vector GC connects points OC; and GD connects OD.
Two planes 1 and 2 are drawn which are the perpendic-
ular bisectors of GC and GD, respectively. Any vector
from the origin to the plane 1, such as k1, will satisfy the
diffraction condition Any vector
from the origin to the plane 2, such as k2, will satisfy the
diffraction condition k2� !�(

1
2�GD)�!�(1

2�GD)2.

k1 ! (1
2 GC) ! (1

2 GC)2.

Figure 9b  Square reciprocal lattice with reciprocal
lattice vectors shown as fine black lines. The lines
shown in white are perpendicular bisectors of the rec-
iprocal lattice vectors. The central square is the small-
est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-
tive cell of the reciprocal lattice. It is called the first
Brillouin zone.
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BRILLOUIN ZONES

Brillouin gave the statement of the diffraction condition that is most
widely used in solid state physics, which means in the description of electron
energy band theory and of the elementary excitations of other kinds. A 
Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lat-
tice. (The construction in the direct lattice was shown in Fig. 1.4.) The 
Brillouin zone gives a vivid geometrical interpretation of the diffraction condi-
tion 2k G ! G2 of Eq. (23). We divide both sides by 4 to obtain

(26)

We now work in reciprocal space, the space of the k’s and G’s. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direction k " G, as we see from (19) with #k ! "G. Thus the 
Brillouin construction exhibits all the wavevectors k which can be Bragg-
reflected by the crystal.

k ! (1
2 G) ! (1

2 G)2 .

!
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k


k

G

u 2u

Figure 8  The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the direction of the incident x-ray beam, and the origin is chosen such that k termi-
nates at any reciprocal lattice point. We draw a sphere of radius about the origin of k. 
A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.
The sphere as drawn intercepts a point connected with the end of k by a reciprocal lattice vector
G. The diffracted x-ray beam is in the direction k! ! k $ G. The angle ! is the Bragg angle of 
Fig. 2. This construction is due to P. P. Ewald.
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Brillouin zone 
boundary

are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (b) for
electrons that are nearly free, but with an energy gap at k ! "!/a. The Bragg
condition (k ! G)2 ! k2 for diffraction of a wave of wavevector k becomes in
one dimension

(4)

where G ! 2!n/a is a reciprocal lattice vector and n is an integer. The first re-
flections and the first energy gap occur at k ! "!/a. The region in k space be-
tween #!/a and !/a is the first Brillouin zone of this lattice. Other energy
gaps occur for other values of the integer n.

The wavefunctions at k ! "!/a are not the traveling waves exp(i!x/a) or
exp(#i!x/a) of free electrons. At these special values of k the wavefunctions
are made up of equal parts of waves traveling to the right and to the left. When
the Bragg reflection condition k ! "!/a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left, and vice versa.
Each subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is a standing wave:
it doesn’t go anywhere.

The time-independent state is represented by standing waves. We can form
two different standing waves from the two traveling waves 

so that the standing waves are

(5)

The standing waves are labeled ($) or (#) according to whether or not they
change sign when #x is substituted for x. Both standing waves are composed
of equal parts of right- and left-directed traveling waves.

Origin of the Energy Gap

The two standing waves "($) and "(#) pile up electrons at different
regions, and therefore the two waves have different values of the potential
energy in the field of the ions of the lattice. This is the origin of the energy
gap. The probability density # of a particle is "*" ! |"|2. For a pure traveling
wave exp(ikx), we have # ! exp(#ikx) exp(ikx) ! 1, so that the charge density
is constant. The charge density is not constant for linear combinations of plane
waves. Consider the standing wave "($) in (5); for this we have

This function piles up electrons (negative charge) on the positive ions centered
at x ! 0, a, 2a, . . . in Fig. 3, where the potential energy is lowest.

#($) ! !"($)! 2 ! cos2 !x%a .

"(#)  ! exp(i!  x%a) # exp(#i! x%a) ! 2i sin (! x%a) .

"($)  ! exp(i!  x%a) $ exp(#i! x%a) ! 2 cos (!  x%a) ;

cos(! x%a) ! i sin(! x%a),exp(! i! x%a) !

k ! !1
2 G ! !n!%a ,

7  Energy Bands 165

ch07.qxd  8/13/04  4:22 PM  Page 165

where G = 2𝜋n/a is a reciprocal laRce vector and n is an integer. 



Two standing waves are formed from two traveling waves:

Formation of Standing Waves

Two corresponding electron density are

The wavefunctions at k = ±𝜋/a are not the traveling waves exp(i𝜋x/a) or
exp(−i𝜋x/a) of free electrons. At these special values of k the
wavefunctions are made up of equal parts of waves traveling to the right
and to the left.

are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (b) for
electrons that are nearly free, but with an energy gap at k ! "!/a. The Bragg
condition (k ! G)2 ! k2 for diffraction of a wave of wavevector k becomes in
one dimension

(4)

where G ! 2!n/a is a reciprocal lattice vector and n is an integer. The first re-
flections and the first energy gap occur at k ! "!/a. The region in k space be-
tween #!/a and !/a is the first Brillouin zone of this lattice. Other energy
gaps occur for other values of the integer n.

The wavefunctions at k ! "!/a are not the traveling waves exp(i!x/a) or
exp(#i!x/a) of free electrons. At these special values of k the wavefunctions
are made up of equal parts of waves traveling to the right and to the left. When
the Bragg reflection condition k ! "!/a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left, and vice versa.
Each subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is a standing wave:
it doesn’t go anywhere.

The time-independent state is represented by standing waves. We can form
two different standing waves from the two traveling waves 

so that the standing waves are

(5)

The standing waves are labeled ($) or (#) according to whether or not they
change sign when #x is substituted for x. Both standing waves are composed
of equal parts of right- and left-directed traveling waves.

Origin of the Energy Gap

The two standing waves "($) and "(#) pile up electrons at different
regions, and therefore the two waves have different values of the potential
energy in the field of the ions of the lattice. This is the origin of the energy
gap. The probability density # of a particle is "*" ! |"|2. For a pure traveling
wave exp(ikx), we have # ! exp(#ikx) exp(ikx) ! 1, so that the charge density
is constant. The charge density is not constant for linear combinations of plane
waves. Consider the standing wave "($) in (5); for this we have

This function piles up electrons (negative charge) on the positive ions centered
at x ! 0, a, 2a, . . . in Fig. 3, where the potential energy is lowest.

#($) ! !"($)! 2 ! cos2 !x%a .

"(#)  ! exp(i!  x%a) # exp(#i! x%a) ! 2i sin (! x%a) .

"($)  ! exp(i!  x%a) $ exp(#i! x%a) ! 2 cos (!  x%a) ;

cos(! x%a) ! i sin(! x%a),exp(! i! x%a) !

k ! !1
2 G ! !n!%a ,
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Both standing waves are composed of equal parts of right- and leV-
directed traveling waves.

are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (b) for
electrons that are nearly free, but with an energy gap at k ! "!/a. The Bragg
condition (k ! G)2 ! k2 for diffraction of a wave of wavevector k becomes in
one dimension

(4)

where G ! 2!n/a is a reciprocal lattice vector and n is an integer. The first re-
flections and the first energy gap occur at k ! "!/a. The region in k space be-
tween #!/a and !/a is the first Brillouin zone of this lattice. Other energy
gaps occur for other values of the integer n.

The wavefunctions at k ! "!/a are not the traveling waves exp(i!x/a) or
exp(#i!x/a) of free electrons. At these special values of k the wavefunctions
are made up of equal parts of waves traveling to the right and to the left. When
the Bragg reflection condition k ! "!/a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left, and vice versa.
Each subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is a standing wave:
it doesn’t go anywhere.

The time-independent state is represented by standing waves. We can form
two different standing waves from the two traveling waves 

so that the standing waves are

(5)

The standing waves are labeled ($) or (#) according to whether or not they
change sign when #x is substituted for x. Both standing waves are composed
of equal parts of right- and left-directed traveling waves.

Origin of the Energy Gap

The two standing waves "($) and "(#) pile up electrons at different
regions, and therefore the two waves have different values of the potential
energy in the field of the ions of the lattice. This is the origin of the energy
gap. The probability density # of a particle is "*" ! |"|2. For a pure traveling
wave exp(ikx), we have # ! exp(#ikx) exp(ikx) ! 1, so that the charge density
is constant. The charge density is not constant for linear combinations of plane
waves. Consider the standing wave "($) in (5); for this we have

This function piles up electrons (negative charge) on the positive ions centered
at x ! 0, a, 2a, . . . in Fig. 3, where the potential energy is lowest.

#($) ! !"($)! 2 ! cos2 !x%a .

"(#)  ! exp(i!  x%a) # exp(#i! x%a) ! 2i sin (! x%a) .

"($)  ! exp(i!  x%a) $ exp(#i! x%a) ! 2 cos (!  x%a) ;

cos(! x%a) ! i sin(! x%a),exp(! i! x%a) !

k ! !1
2 G ! !n!%a ,
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Figure 3a pictures the variation of the electrostatic potential energy of a
conduction electron in the field of the positive ion cores. The ion cores bear a
net positive charge because the atoms are ionized in the metal, with the va-
lence electrons taken off to form the conduction band. The potential energy of
an electron in the field of a positive ion is negative, so that the force between
them is attractive.

For the other standing wave !(!) the probability density is

which concentrates electrons away from the ion cores. In Fig. 3b we show 
the electron concentration for the standing waves !("), !(!), and for a travel-
ing wave.

When we calculate the average or expectation values of the potential
energy over these three charge distributions, we find that the potential energy
of "(") is lower than that of the traveling wave, whereas the potential energy of
"(!) is higher than the traveling wave. We have an energy gap of width Eg if 

"(!) # !!(!) !2 ! sin2
 #x$a ,
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U, potential energy
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Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores 
of a linear lattice. (b) Distribution of probability density " in the lattice for |!(!)|2 ! sin2 #x/a;
|!(")|2 ! cos2 #x/a; and for a traveling wave. The wavefunction !(") piles up electronic charge
on the cores of the positive ions, thereby lowering the potential energy in comparison with the 
average potential energy seen by a traveling wave. The wavefunction !(!) piles up charge in 
the region between the ions, thereby raising the potential energy in comparison with that seen by
a traveling wave. This figure is the key to understanding the origin of the energy gap.
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Origin of Energy Gap
The two standing waves ψ(+) and ψ(−) pile up electrons at different
regions, and therefore the two waves have different values of the
poten:al energy in the field of the ions of the laRce. This is the origin of
the energy gap.

Figure 3a pictures the variation of the electrostatic potential energy of a
conduction electron in the field of the positive ion cores. The ion cores bear a
net positive charge because the atoms are ionized in the metal, with the va-
lence electrons taken off to form the conduction band. The potential energy of
an electron in the field of a positive ion is negative, so that the force between
them is attractive.

For the other standing wave !(!) the probability density is

which concentrates electrons away from the ion cores. In Fig. 3b we show 
the electron concentration for the standing waves !("), !(!), and for a travel-
ing wave.

When we calculate the average or expectation values of the potential
energy over these three charge distributions, we find that the potential energy
of "(") is lower than that of the traveling wave, whereas the potential energy of
"(!) is higher than the traveling wave. We have an energy gap of width Eg if 

"(!) # !!(!) !2 ! sin2
 #x$a ,
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Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores 
of a linear lattice. (b) Distribution of probability density " in the lattice for |!(!)|2 ! sin2 #x/a;
|!(")|2 ! cos2 #x/a; and for a traveling wave. The wavefunction !(") piles up electronic charge
on the cores of the positive ions, thereby lowering the potential energy in comparison with the 
average potential energy seen by a traveling wave. The wavefunction !(!) piles up charge in 
the region between the ions, thereby raising the potential energy in comparison with that seen by
a traveling wave. This figure is the key to understanding the origin of the energy gap.
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crystals respond to applied fields as if endowed with negative or positive
charges, !e or "e, and herein lies the explanation of the negative and positive
values of the Hall coefficient.

NEARLY FREE ELECTRON MODEL

On the free electron model the allowed energy values are distributed es-
sentially continuously from zero to infinity. We saw in Chapter 6 that

(1)

where, for periodic boundary conditions over a cube of side L,

(2)

The free electron wavefunctions are of the form

(3)

they represent running waves and carry momentum 
The band structure of a crystal can often be explained by the nearly free

electron model for which the band electrons are treated as perturbed only
weakly by the periodic potential of the ion cores. This model answers almost
all the qualitative questions about the behavior of electrons in metals.

We know that Bragg reflection is a characteristic feature of wave propaga-
tion in crystals. Bragg reflection of electron waves in crystals is the cause of
energy gaps. (At Bragg reflection wavelike solutions of the Schrödinger equa-
tion do not exist, as in Fig. 2.) These energy gaps are of decisive significance in
determining whether a solid is an insulator or a conductor.

We explain physically the origin of energy gaps in the simple problem of a
linear solid of lattice constant a. The low energy portions of the band structure

p # !k.

!k(r) # exp(ik ! r) ;

kx, ky, kz # 0 ;   " 

2"
L  ;   " 

4"
L  ;  . . . .

#k # 

!2

2m (kx
2
 " ky

2
 " kz

2) ,
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Figure 2 (a) Plot of energy # versus wavevector k for a free electron. (b) Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap Eg

shown is associated with the first Bragg reflection at k # $"/a; other gaps are found at higher 
energies at $n"/a, for integral values of n.

ch07.qxd  8/13/04  4:22 PM  Page 164



In between the two energies there are 
no allowed energies; i.e., an energy 
gap exists.  We can sketch these 1-D 
results schema:cally:

E

kx
a
p

a
p-

E-

E+
Eg

≡ “energy gap”

The periodic poten:al U(x) splits 
the free-electron E(k) into 
“energy bands” separated by 
gaps at each BZ boundary.

Let’s assume the poten:al energy 
of an electron in the crystal at point x is

Magnitude of Energy Gap

U(x) = U cos 2𝜋x/a

The first-order energy difference between the two standing wave states is 

the energies of !(!) and !(") differ by Eg. Just below the energy gap at 
points A in Fig. 2 the wavefunction is "("), and just above the gap at points B
the wavefunction is "(!).

Magnitude of the Energy Gap

The wavefunctions at the Brillouin zone boundary k # #/a are cos #x/a
and sin #x/a, normalized over unit length of line. Let us suppose that the
potential energy of an electron in the crystal at point x is

The first-order energy difference between the two standing wave states is

(6)

We see that the gap is equal to the Fourier component of the crystal potential.

BLOCH FUNCTIONS

F. Bloch proved the important theorem that the solutions of the
Schrödinger equation for a periodic potential must be of a special form:

(7)

where uk(r) has the period of the crystal lattice with uk(r) # uk(r " T). Here T
is a translation vector of the lattice. The result (7) expresses the Bloch theorem:

The eigenfunctions of the wave equation for a periodic potential are
the product of a plane wave exp(ik ! r) times a function uk(r) with the
periodicity of the crystal lattice.

A one-electron wavefunction of the form (7) is called a Bloch function and
can be decomposed into a sum of traveling waves, as we see later. Bloch func-
tions can be assembled into wave packets to represent electrons that propa-
gate freely through the potential field of the ion cores.

We give now a restricted proof of the Bloch theorem, valid when "k is
nondegenerate; that is, when there is no other wavefunction with the same
energy and wavevector as "k. The general case will be treated later. We con-
sider N identical lattice points on a ring of length Na. The potential energy is
periodic in a, with U(x) # U(x " sa), where s is an integer.

Let us be guided by the symmetry of the ring to look for solutions of the
wave equation such that

(8)"(x " a) # C"(x) ,

"k(r) # uk(r) exp(ik ! r) ,

# 2 !dx U cos(2#x/a)(cos2 #x/a ! sin2 #x/a) # U .

Eg # ! 1

0
 dx U(x) [""(")" 2

 ! ""(!)" 2]

U(x) # U cos 2#x/a .

#2
#2
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Bloch Theorem and Bloch Wavefunctions

In the independent-electron approxima:on, the :me-independent
Schrodinger equa:on for an electron in a periodic poten:al is:

yy ErU
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where the potential energy is invariant under a lattice translation 
vector T:

Bloch showed that the solu:ons to the SE are the product of a
plane wave and a func:on with the periodicity of the laRce:
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Consider a 1D case, N identical lattice points around a circular ring, each 
separated by a distance a:

1
2 N

3
)()( xNax yy =+

The ring model fulfills the periodic boundary 
condi:on:

The symmetry of the ring implies that we can 
find a solution to the wave equation:
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If we apply this translation N times we will return to the initial atom
position:

Now we can rewrite
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It can be generalized to 3D: Tki
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Bloch Wavefunctions

This result gives evidence to
support the nearly-free electron
approximation, in which the
periodic potential is assumed to
have a very small effect on the
plane-wave character of a free
electron wavefunction. It also
explains why the free-electron gas
model is so successful for the
simple metals.
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Let’s assume the periodic poten:al energy of an electron in a 1D laRce of a at 
point x is U(x+a) = U(x), so U(x) can be expressed by

Wave Equation of Electron in 1D Lattice

k	= 2πn/L

The kine:c energy term is

values of k. Let U(x) denote the potential energy of an electron in a linear lattice
of lattice constant a. We know that the potential energy is invariant under a crys-
tal lattice translation: U(x) ! U(x " a). A function invariant under a crystal lattice
translation may be expanded as a Fourier series in the reciprocal lattice vectors
G. We write the Fourier series for the potential energy as

(22)

The values of the coefficients UG for actual crystal potentials tend to decrease
rapidly with increasing magnitude of G. For a bare coulomb potential UG

decreases as 1/G2.
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170

0

5

10

15

20

! 2!

ka
3! 4!

", 
in

 u
ni

ts 
#2 !

2 /2
m

a2

Figure 6 Plot of energy vs. wavenumber for the
Kronig-Penney potential, with P ! 3!/2. Notice
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Figure 5 Plot of the function (P/Ka) sin Ka " cos Ka, for P ! 3!/2. The allowed values of the
energy e are given by those ranges of a for which the function lies between $1.
For other values of the energy there are no traveling wave or Bloch-like solutions to the wave
equation, so that forbidden gaps in the energy spectrum are formed.
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We want the potential energy U(x) to be a real function:

(23)

For convenience we have assumed that the crystal is symmetric about x ! 0
and that U0 ! 0.

The wave equation of an electron in the crystal is where is the
hamiltonian and ! is the energy eigenvalue. The solutions " are called eigen-
functions or orbitals or Bloch functions. Explicitly, the wave equation is

(24)

Equation (24) is written in the one-electron approximation in which the
orbital "(x) describes the motion of one electron in the potential of the ion
cores and in the average potential of the other conduction electrons.

The wavefunction "(x) may be expressed as a Fourier series summed over
all values of the wavevector permitted by the boundary conditions, so that

(25)

where k is real. (We could equally well write the index k as a subscript on C, as
in Ck.)

The set of values of k has the form 2#n/L, because these values satisfy
periodic boundary conditions over length L. Here n is any integer, positive or
negative. We do not assume, nor is it generally true, that "(x) itself is periodic
in the fundamental lattice translation a. The translational properties of "(x)
are determined by the Bloch theorem (7).

Not all wavevectors of the set 2#n/L enter the Fourier expansion of 
any one Bloch function. If one particular wavevector k is contained in a ",
then all other wavevectors in the Fourier expansion of this " will have the
form k " G, where G is any reciprocal lattice vector. We prove this result in
(29) below.

We can label a wavefunction " that contains a component k as "k or,
equally well, as "k"G, because if k enters the Fourier expansion then k " G
may enter. The wavevectors k " G running over G are a restricted subset of
the set 2#n/L, as shown in Fig. 7.

We shall usually choose as a label for the Bloch function that k which lies
within the first Brillouin zone. When other conventions are used, we shall say
so. This situation differs from the phonon problem for a monatomic lattice
where there are no components of the ion motion outside the first zone. The
electron problem is like the x-ray diffraction problem because like the electron
wavefunction the electromagnetic field exists everywhere within the crystal
and not only at the ions.

" ! !
k

 C(k) eikx ,

" 1
2m p2

 " U(x)# "(x) ! " 1
2m p2

 " !
G

 UG eiGx# "(x) ! !"(x) .

!!" ! !",

U(x) ! !
G!0

 UG(eiGx
 " e#iGx) ! 2 !

G!0
 UG  cos Gx .
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,  and the wave equa:on is 

The wavefunction ψ(x) may be expressed as a Fourier series summed over all
values of the wavevector permitted by the boundary conditions, so that

We want the potential energy U(x) to be a real function:
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The wave equation of an electron in the crystal is where is the
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periodic boundary conditions over length L. Here n is any integer, positive or
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in the fundamental lattice translation a. The translational properties of "(x)
are determined by the Bloch theorem (7).
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any one Bloch function. If one particular wavevector k is contained in a ",
then all other wavevectors in the Fourier expansion of this " will have the
form k " G, where G is any reciprocal lattice vector. We prove this result in
(29) below.

We can label a wavefunction " that contains a component k as "k or,
equally well, as "k"G, because if k enters the Fourier expansion then k " G
may enter. The wavevectors k " G running over G are a restricted subset of
the set 2#n/L, as shown in Fig. 7.

We shall usually choose as a label for the Bloch function that k which lies
within the first Brillouin zone. When other conventions are used, we shall say
so. This situation differs from the phonon problem for a monatomic lattice
where there are no components of the ion motion outside the first zone. The
electron problem is like the x-ray diffraction problem because like the electron
wavefunction the electromagnetic field exists everywhere within the crystal
and not only at the ions.
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To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

and the potential energy term is

The wave equation is obtained as the sum:

(26)

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

(27)

with the notation

(28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation (24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k ! G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic
approach.
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Figure 7 The lower points represent values of the wavevector k ! 2%n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to $!. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction $(x), starting from a particular
wavevector k ! k0 ! "8(2%/L). The shortest reciprocal lattice vector is 2%/a ! 20(2%/L).
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and the potential energy term is 



The central equation:

The wave equa:on is obtained as the sum:

To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

and the potential energy term is

The wave equation is obtained as the sum:

(26)

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

(27)

with the notation

(28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation (24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k ! G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic
approach.

"k ! !2k2/2m .

("k " #)C(k) # !
G

 UGC(k " G) ! 0 .

!
k

 

!2

2m k2C(k) eikx
 #!

G
 !

k
 UGC(k) e i(k#G)x

 ! #!
k

 C(k) e 

ikx .

"!
G

 UG eiGx# $(x) ! !
G

 !
k

 UG eiGxC(k) eikx .

1
2m p2$(x) ! 

1
2m  ""i! 

d
dx#

2 
$(x) ! " !2

2m 

d2$

dx2   ! 

!2

2m !
k

 k2C(k) eikx ;

172

a
2%k0 – a

2%k0 + a
4%k0 +k0

–30 –20 –10 0
k, in units 2%/L

10 20 30

Figure 7 The lower points represent values of the wavevector k ! 2%n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to $!. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction $(x), starting from a particular
wavevector k ! k0 ! "8(2%/L). The shortest reciprocal lattice vector is 2%/a ! 20(2%/L).

ch07.qxd  8/13/04  4:22 PM  Page 172

To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

and the potential energy term is

The wave equation is obtained as the sum:

(26)

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

(27)

with the notation

(28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation (24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k ! G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic
approach.

"k ! !2k2/2m .

("k " #)C(k) # !
G

 UGC(k " G) ! 0 .

!
k

 

!2

2m k2C(k) eikx
 #!

G
 !

k
 UGC(k) e i(k#G)x

 ! #!
k

 C(k) e 

ikx .

"!
G

 UG eiGx# $(x) ! !
G

 !
k

 UG eiGxC(k) eikx .

1
2m p2$(x) ! 

1
2m  ""i! 

d
dx#

2 
$(x) ! " !2

2m 

d2$

dx2   ! 

!2

2m !
k

 k2C(k) eikx ;

172

a
2%k0 – a

2%k0 + a
4%k0 +k0

–30 –20 –10 0
k, in units 2%/L

10 20 30

Figure 7 The lower points represent values of the wavevector k ! 2%n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to $!. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction $(x), starting from a particular
wavevector k ! k0 ! "8(2%/L). The shortest reciprocal lattice vector is 2%/a ! 20(2%/L).

ch07.qxd  8/13/04  4:22 PM  Page 172

To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

and the potential energy term is

The wave equation is obtained as the sum:

(26)

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

(27)

with the notation

(28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation (24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k ! G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic
approach.

"k ! !2k2/2m .

("k " #)C(k) # !
G

 UGC(k " G) ! 0 .

!
k

 

!2

2m k2C(k) eikx
 #!

G
 !

k
 UGC(k) e i(k#G)x

 ! #!
k

 C(k) e 

ikx .

"!
G

 UG eiGx# $(x) ! !
G

 !
k

 UG eiGxC(k) eikx .

1
2m p2$(x) ! 

1
2m  ""i! 

d
dx#

2 
$(x) ! " !2

2m 

d2$

dx2   ! 

!2

2m !
k

 k2C(k) eikx ;

172

a
2%k0 – a

2%k0 + a
4%k0 +k0

–30 –20 –10 0
k, in units 2%/L

10 20 30

Figure 7 The lower points represent values of the wavevector k ! 2%n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to $!. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction $(x), starting from a particular
wavevector k ! k0 ! "8(2%/L). The shortest reciprocal lattice vector is 2%/a ! 20(2%/L).

ch07.qxd  8/13/04  4:22 PM  Page 172

To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

and the potential energy term is

The wave equation is obtained as the sum:

(26)

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

(27)

with the notation

(28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation (24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k ! G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic
approach.

"k ! !2k2/2m .

("k " #)C(k) # !
G

 UGC(k " G) ! 0 .

!
k

 

!2

2m k2C(k) eikx
 #!

G
 !

k
 UGC(k) e i(k#G)x

 ! #!
k

 C(k) e 

ikx .

"!
G

 UG eiGx# $(x) ! !
G

 !
k

 UG eiGxC(k) eikx .

1
2m p2$(x) ! 

1
2m  ""i! 

d
dx#

2 
$(x) ! " !2

2m 

d2$

dx2   ! 

!2

2m !
k

 k2C(k) eikx ;

172

a
2%k0 – a

2%k0 + a
4%k0 +k0

–30 –20 –10 0
k, in units 2%/L

10 20 30

Figure 7 The lower points represent values of the wavevector k ! 2%n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to $!. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction $(x), starting from a particular
wavevector k ! k0 ! "8(2%/L). The shortest reciprocal lattice vector is 2%/a ! 20(2%/L).

ch07.qxd  8/13/04  4:22 PM  Page 172



Restatement of Bloch Theorem
The given wavefunc:on:

Since ,  so 𝜓k(x +	T)	=		𝜓k(x)	eikT

Restatement of the Bloch Theorem

Once we determine the C’s from (27), the wavefunction (25) is given as

(29)

which may be rearranged as

with the definition

Because uk(x) is a Fourier series over the reciprocal lattice vectors, it is in-
variant under a crystal lattice translation T, so that uk(x) ! uk(x ! T). We verify
this directly by evaluating uk(x ! T):

Because exp("iGT) # 1 by (2.17), it follows that uk(x ! T) # uk(x), thereby
establishing the periodicity of uk. This is an alternate and exact proof of the
Bloch theorem and is valid even when the "k are degenerate.

Crystal Momentum of an Electron

What is the significance of the wavevector k used to label the Bloch func-
tion? It has several properties:

• Under a crystal lattice translation which carries r to r ! T we have

(30)

because uk(r ! T) # uk(r). Thus exp(ik ! T) is the phase factor by which a
Bloch function is multiplied when we make a crystal lattice translation T.

• If the lattice potential vanishes, the central equation (27) reduces to 
(#k " $)C(k) # 0, so that all C(k " G) are zero except C(k), and thus uk(r)
is constant. We have "k(r) # eik$r, just as for a free electron. (This assumes 
we have had the foresight to pick the “right” k as the label. For many pur-
poses other choices of k, differing by a reciprocal lattice vector, will be more
convenient.)

• The quantity k enters in the conservation laws that govern collision processes
in crystals. (The conservation laws are really selection rules for transitions.)
Thus is called the crystal momentum of an electron. If an electron k
absorbs in a collision a phonon of wavevector q, the selection rule is k ! q #
k% ! G. In this process the electron is scattered from a state k to a state k%,
with G a reciprocal lattice vector. Any arbitrariness in labeling the Bloch func-
tions can be absorbed in the G without changing the physics of the process.

!k

"k(r ! T) # eik ! T eik ! ruk(r ! T) # eik ! T "k(r) ,

uk(x ! T) # ! C(k " G)e"iG(x!T)
 # e"iGT[! C(k " G) e" iGx] # e"iGT uk(x) .

uk(x) " !
G

 C(k " G) e"iGx
 .

"k(x) # "!
G

 C(k " G) e"iGx# eikx
 # eikxuk(x) ,

"k(x) # !
G

 C(k " G) ei(k"G)x ,
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because uk(r ! T) # uk(r). Thus exp(ik ! T) is the phase factor by which a
Bloch function is multiplied when we make a crystal lattice translation T.

• If the lattice potential vanishes, the central equation (27) reduces to 
(#k " $)C(k) # 0, so that all C(k " G) are zero except C(k), and thus uk(r)
is constant. We have "k(r) # eik$r, just as for a free electron. (This assumes 
we have had the foresight to pick the “right” k as the label. For many pur-
poses other choices of k, differing by a reciprocal lattice vector, will be more
convenient.)

• The quantity k enters in the conservation laws that govern collision processes
in crystals. (The conservation laws are really selection rules for transitions.)
Thus is called the crystal momentum of an electron. If an electron k
absorbs in a collision a phonon of wavevector q, the selection rule is k ! q #
k% ! G. In this process the electron is scattered from a state k to a state k%,
with G a reciprocal lattice vector. Any arbitrariness in labeling the Bloch func-
tions can be absorbed in the G without changing the physics of the process.
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Restatement of the Bloch Theorem

Once we determine the C’s from (27), the wavefunction (25) is given as

(29)
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The quan:ty k enters in the conserva:on laws that govern collision
processes in crystals. (The conserva:on laws are really selec:on rules for
transi:ons.) Thus ℏk is called the crystal momentum of an electron. If an
electron k absorbs in a collision a phonon of wavevector q, the selec:on
rule is k + q = k‘ + G. In this process the electron is scadered from a state k
to a state k’, with G a reciprocal laRce vector. Any arbitrariness in labeling
the Bloch func:ons can be absorbed in the G without changing the
physics of the process.



Consequence of Bloch Theorem
From a knowledge of the dispersion rela:on, we can calculate the
propaga:on speed (group velocity) of a wave pulse :

Similarly, it can be shown using Bloch’s theorem that the propaga:on
speed of an electron wavepacket in a periodic crystal can be calculated
from a knowledge of the energy band along that direc:on in reciprocal
space:

dk
dvg
w

=group velocity in 1D:

dk
dE

dk
dvg
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welectron velocity in 1D:
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wÑ=and in 3D: 
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


Ñ=in	3D:

This means that an electron (with a specified wavevector) moves through a
perfect periodic laRce with a constant velocity; i.e., it moves without
being scadered or in any way having its velocity affected.



Periodic Potential from Atomic Orbitals
Electrosta:c poten:al energy in a crystalline solid along a line passing 
through a line of atoms:

bare ions

solid

This 1D model can be approximated with a 
cosine or square poten:al:
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The Krönig-Penney Model
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Boundary CondiMons and Bloch Theorem

x	=	0

The solu:ons of the SE require that the wave-
func:on and its deriva5ve be con:nuous across 
the poten:al boundaries.  Thus, at the two 
boundaries (which are infinitely repeated):
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Now using Bloch’s theorem for a 
periodic poten:al with period a+b:
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Now we can write the boundary conditions at x = a:
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)()()( baikQbQbaiai eDeCeQBeAei +-- -=- kkk (4)



Results of the Krönig-Penney Model

Since the values of a and b are inputs to the model, and Q depends on U0 and
the energy E, we can solve this system of equa:ons to find the energy E at
any specified value of the Bloch wavevector k.
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Taking the determinant and seRng it equal to zero gives:
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The four simultaneous equations (1-4) can be written compactly in matrix form



𝛿-Function Approximation
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The result is simplified if we represent the potential by the periodic delta
function obtained when we pass to the limit b = 0 and U0 = ∞ in such a way
that Q2ba/2 = P, a finite quantity. In this limit Q >> 𝜅 and Qb << 1. Then the
above equation reduces to

values of k. Let U(x) denote the potential energy of an electron in a linear lattice
of lattice constant a. We know that the potential energy is invariant under a crys-
tal lattice translation: U(x) ! U(x " a). A function invariant under a crystal lattice
translation may be expanded as a Fourier series in the reciprocal lattice vectors
G. We write the Fourier series for the potential energy as

(22)

The values of the coefficients UG for actual crystal potentials tend to decrease
rapidly with increasing magnitude of G. For a bare coulomb potential UG

decreases as 1/G2.
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Kronig-Penney potential, with P ! 3!/2. Notice
the energy gaps at ka ! !, 2!, 3! . . . .

–4! –2! 2! 4!
3!–3! –! !0

–1

+1

(P/Ka) sin Ka + cos Ka

Ka

"

Figure 5 Plot of the function (P/Ka) sin Ka " cos Ka, for P ! 3!/2. The allowed values of the
energy e are given by those ranges of a for which the function lies between $1.
For other values of the energy there are no traveling wave or Bloch-like solutions to the wave
equation, so that forbidden gaps in the energy spectrum are formed.
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with P = 3𝜋/2, 

(P/𝜅a) sin𝜅a + cos𝜅a = coska



Brillouin Zone

A	Brillouin	zone	is	deEined	as	a	Wigner-Seitz	cell	in	the	
reciprocal	lattice.



The central cell in the reciprocal la-ce is of special
importance in the theory of solids, and we call it the first
Brillouin zone. The first Brillouin zone is the smallest volume
en2rely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal la:ce vectors drawn from the origin.

Brillouin Zone in 1D and 2D

Here are orthogonal vectors of unit length. The volume of the cell is 
a1 a2 ! a3 " a3. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

(27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice 
constant 2!/a.

b1 " (2!/a)x̂ ;   b2 " (2!/a)y ˆ  ;   b3 " (2!/a)ẑ .

!
x̂, ŷ, ẑ

2  Reciprocal Lattice 35
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"

Figure 10  Construction of the first Brillouin
zone for an oblique lattice in two dimensions. We
first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first Bril-
louin zone.

a
Linear crystal lattice

" b k

k

Reciprocal lattice

= a
!# k= a

!

Figure 11  Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to The shortest reciprocal lattice vectors from the origin are b and
#b. The perpendicular bisectors of these vectors form the boundaries of the first Brillouin zone.
The boundaries are at .k�"�!!/a

2!/a.
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All Brillouin Zones: Square Lattice
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At the Zone Boundary

and

These free electron bands are plotted in Fig. 8. It is a good exercise to plot the
same bands for k parallel to the [111] direction of wavevector space.

Approximate Solution Near a Zone Boundary

We suppose that the Fourier components UG of the potential energy are
small in comparison with the kinetic energy of a free electron at the zone
boundary. We first consider a wavevector exactly at the zone boundary at G,
that is, at !/a. Here

so that at the zone boundary the kinetic energy of the two component waves 
k ! " G are equal.

If C( G) is an important coefficient in the orbital (29) at the zone boundary,
then C(# G) is also an important coefficient. This result also follows from the
discussion of (5). We retain only those equations in the central equation that
contain both coefficients C( G) and C(# G), and neglect all other coefficients.1

2
1
2

1
2

1
2

1
2

k2
 ! (1

2 G)2 ;  (k # G)2
 ! (1

2 G # G)2
 ! (1

2 G)2 ,

1
2

7  Energy Bands 177

a
!

a
!0

2 3

kx

–

"

4,5,6,7

8,9,10,11
12,13,14,15

1

Figure 8 Low-lying free electron energy bands
of the empty sc lattice, as transformed to the first
Brillouin zone and plotted vs. (kx00). The free
electron energy is where the G’s
are given in the second column of the table. The
bold curves are in the first Brillouin zone, with
#!/a $ kx $ !/a. Energy bands drawn in this
way are said to be in the reduced zone scheme.

!2(k % G)2/2m,
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so that at the zone boundary the kinetic energy of the two component waves 
k = ± G/2  are equal. 

Solution of the Central Equation

The central equation (27),

(31)

represents a set of simultaneous linear equations that connect the coefficients
C(k ! G) for all reciprocal lattice vectors G. It is a set because there are as
many equations as there are coefficients C. These equations are consistent if
the determinant of the coefficients vanishes.

Let us write out the equations for an explicit problem. We let g denote the
shortest G. We suppose that the potential energy U(x) contains only a single
Fourier component Ug " U!g, denoted by U. Then a block of the determinant
of the coefficients is given by:

. (32)

To see this, write out five successive equations of the set (31). The determi-
nant in principle is infinite in extent, but it will often be sufficient to set equal
to zero the portion we have shown.

At a given k, each root # or #k lies on a different energy band, except in
case of coincidence. The solution of the determinant (32) gives a set of energy
eigenvalues #nk, where n is an index for ordering the energies and k is the
wavevector that labels Ck.

Most often k will be taken in the first zone, to reduce possible confusion in
the labeling. If we chose a k different from the original by some reciprocal
lattice vector, we would have obtained the same set of equations in a different
order—but having the same energy spectrum.

Kronig-Penney Model in Reciprocal Space

As an example of the use of the central equation (31) for a problem that is
exactly solvable, we use the Kronig-Penney model of a periodic delta-function
potential:

(33)

where A is a constant and a the lattice spacing. The sum is over all integers s
between 0 and 1/a. The boundary conditions are periodic over a ring of unit

U(x) ! 2 !
G!0

 UG  cos Gx ! Aa!
s

 $(x " sa) ,

%k " 2g " #
U
0
0
0

U
%k " g " #

U
0
0

0
U

%k " #
U
0

0
0
U

%k # g " #
U

0
0
0
U

%k # 2g " #

(%k " #)C(k) # !
G

 UGC(k " G) ! 0 ,
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One equation of (31) becomes, with k ! G and 

(44)

Another equation of (31) becomes, with k ! G,

(45)

These two equations have nontrivial solutions for the two coefficients if
the energy ! satisfies

(46)

whence

(47)

The energy has two roots, one lower than the free electron kinetic energy by
U, and one higher by U. Thus the potential energy 2U cos Gx has created an
energy gap 2U at the zone boundary.

The ratio of the C’s may be found from either (44) or (45):

(48)

where the last step uses (47). Thus the Fourier expansion of "(x) at the zone
boundary has the two solutions

These orbitals are identical to (5).
One solution gives the wavefunction at the bottom of the energy gap; the

other gives the wavefunction at the top of the gap. Which solution has the
lower energy depends on the sign of U.

We now solve for orbitals with wavevector k near the zone boundary G.
We use the same two-component approximation, now with a wavefunction of
the form

(49)

As directed by the central equation (31), we solve the pair of equations

(#k"G "!)C(k " G) # UC(k) ! 0 ,

(#k " !)C(k) # UC(k " G) ! 0 ;

"(x) ! C(k) eikx
 # C(k " G) ei(k"G)x .

1
2

"(x) ! exp(iGx/2) ! exp("iGx/2) .
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2 G)

C(1
2 G)
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! " #
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One equation of (31) becomes, with k ! G and 

(44)

Another equation of (31) becomes, with k ! G,

(45)

These two equations have nontrivial solutions for the two coefficients if
the energy ! satisfies

(46)

whence

(47)

The energy has two roots, one lower than the free electron kinetic energy by
U, and one higher by U. Thus the potential energy 2U cos Gx has created an
energy gap 2U at the zone boundary.

The ratio of the C’s may be found from either (44) or (45):

(48)

where the last step uses (47). Thus the Fourier expansion of "(x) at the zone
boundary has the two solutions

These orbitals are identical to (5).
One solution gives the wavefunction at the bottom of the energy gap; the

other gives the wavefunction at the top of the gap. Which solution has the
lower energy depends on the sign of U.

We now solve for orbitals with wavevector k near the zone boundary G.
We use the same two-component approximation, now with a wavefunction of
the form
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Near a Zone Boundary
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with !k defined as These equations have a solution if the energy "
satisfies 

whence 
The energy has two roots:

(50)

and each root describes an energy band, plotted in Fig. 9. It is convenient to
expand the energy in terms of a quantity (the mark over the K is called a
tilde), which measures the difference in wavevector between k
and the zone boundary:

(51)

in the region Here as before.
Writing the two zone boundary roots of (47) as "(!), we may write (51) as

(52)"K̃ (!) " "(!) # "
2K̃2

2m !1 ! 2!
U " .

! " ("2/2m)(1
2 G)2"2GK̃/2m $ #U #.

 $ ("2/2m)(1
4G2 # K̃

 

2) ! U[1 # 2(!/U2)("2K̃
 2/2m)] ,

 "K̃  " ("2/2m)(1
4G2 #K̃

 2)  ! [4!("2K̃2/2m) # U2]1/2

K̃ # k % 12G
K̃

" " 

1
2 (!k % G # !k) ! [1

4 (!k % G % !k)2
 # U2]1/2

 ,

"2 % "(!k%G # !k) # !k%G !k%U2 " 0.

%!k % "
U

U
!k%G % "

 %  " 0 ,

"2k2&2m.
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Figure 9 Solutions of (50) in the periodic zone scheme, in the region near a boundary of the first
Brillouin zone. The units are such that U " %0.45, G " 2, and The free electron curve is
drawn for comparison. The energy gap at the zone boundary is 0.90. The value of U has deliberately
been chosen large for this illustration, too large for the two-term approximation to be accurate.
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Different Representations of E(k)

If we apply periodic boundary 
conditions to the 1-D crystal, the 
energy bands are invariant under a 
reciprocal lattice translation vector:

iGkEGkE a
n ˆ)()( 2p==+



The bands can be graphically displayed 
in either the (i) extended zone 
scheme; (ii) periodic zone scheme; or 
(iii) reduced zone scheme. 

(i) extended zone scheme:  plot E(k) from k = 0 through all possible BZs

(ii) periodic zone scheme:  redraw E(k) in each zone and superimpose

(iii) reduced zone scheme:  all states with |k| > p/a are translated back into 
1st BZ

1G




Empty LaQce ApproximaMon

Example: Low-lying free electron bands of a
simple cubic laRce ploded along the
kx in the first Brillouin zone.

Actual band structures are usually exhibited as plots of energy versus
wavevector in the first Brillouin zone. When wavevectors happen to be given
outside the first zone, they are carried back into the first zone by subtrac:ng
a suitable reciprocal laRce vector. Such a transla:on can always be found.

with k in the first zone and G allowed to run over the 
appropriate reciprocal lattice points. 

The final result for (40) is

(43)

which agrees with the Kronig-Penney result (21b) with P written for .

Empty Lattice Approximation

Actual band structures are usually exhibited as plots of energy versus
wavevector in the first Brillouin zone. When wavevectors happen to be given
outside the first zone, they are carried back into the first zone by subtracting a
suitable reciprocal lattice vector. Such a translation can always be found. The
operation is helpful in visualization.

When band energies are approximated fairly well by free electron ener-
gies it is advisable to start a calculation by carrying the free elec-
tron energies back into the first zone. The procedure is simple enough once
one gets the hang of it. We look for a G such that a k! in the first zone satisfies

where k is unrestricted and is the true free electron wavevector in the empty
lattice. (Once the plane wave is modulated by the lattice, there is no single
“true” wavevector for the state !.)

If we drop the prime on k! as unnecessary baggage, the free electron
energy can always be written as

with k in the first zone and G allowed to run over the appropriate reciprocal
lattice points.

We consider as an example the low-lying free electron bands of a simple
cubic lattice. Suppose we want to exhibit the energy as a function of k in the
[100] direction. For convenience, choose units such that We show
several low-lying bands in this empty lattice approximation with their energies
"(000) at k " 0 and "(kx00) along the kx axis in the first zone:

Band Ga/2# "(000) "(kx00)

1 000 0
2,3 100, (2#/a)2 (kx # 2#/a)2

4,5,6,7 010, ,001, (2#/a)2

8,9,10,11 110,101,1 0,10 2(2#/a)2 (kx $ 2#/a)2 $ (2#/a)2

12,13,14,15 , , , 0 2(2#/a)2 (kx % 2#/a)2 $ (2#/a)2

16,17,18,19 011,0 1,01 ,0 2(2#/a)2 kx
2
 $ 2(2#&a)21111

11110101110
11

kx
2
 $ (2#&a)2001010

100
kx

2

!2&2m " 1.

 " (!2/2m)[(kx $ Gx)2
 $ (ky $ Gy)2

 $ (kz $ Gz)2] ,

"(kx,ky,kz) " (!2/2 m)(k $ G)2

k" $ G " k ,

"k 

 " !2k2/2m,

mAa2/2!2

(mAa2/2!2)(Ka)% 1 sin Ka $ cos Ka " cos ka ,
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The final result for (40) is
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These free electron bands are plotted in Fig. 8. It is a good exercise to plot the
same bands for k parallel to the [111] direction of wavevector space.

Approximate Solution Near a Zone Boundary

We suppose that the Fourier components UG of the potential energy are
small in comparison with the kinetic energy of a free electron at the zone
boundary. We first consider a wavevector exactly at the zone boundary at G,
that is, at !/a. Here

so that at the zone boundary the kinetic energy of the two component waves 
k ! " G are equal.

If C( G) is an important coefficient in the orbital (29) at the zone boundary,
then C(# G) is also an important coefficient. This result also follows from the
discussion of (5). We retain only those equations in the central equation that
contain both coefficients C( G) and C(# G), and neglect all other coefficients.1

2
1
2

1
2

1
2

1
2

k2
 ! (1

2 G)2 ;  (k # G)2
 ! (1

2 G # G)2
 ! (1

2 G)2 ,

1
2
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Figure 8 Low-lying free electron energy bands
of the empty sc lattice, as transformed to the first
Brillouin zone and plotted vs. (kx00). The free
electron energy is where the G’s
are given in the second column of the table. The
bold curves are in the first Brillouin zone, with
#!/a $ kx $ !/a. Energy bands drawn in this
way are said to be in the reduced zone scheme.

!2(k % G)2/2m,
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Number of Orbitals in a Band
For free electron model:

At the 1BZ boundary k = 𝜋/a, so the total allowed k’s are

Each primitive cell contributes exactly one independent value of k to
each energy band. This result carries over into three dimensions. With
account taken of the two independent orientations of the electron spin,
there are 2N independent orbitals in each energy band. If there is a single atom
of valence, one in each primitive cell, the band can be half filled with electrons. If
each atom contributes two valence electrons to the band, the band can be exactly
filled. If there are two atoms of valence one in each primitive cell, the band can
also be exactly filled.

These are the roots for the energy when the wavevector is very close to the
zone boundary at G. Note the quadratic dependence of the energy on the
wavevector . For U negative, the solution !(!) corresponds to the upper of
the two bands, and !(") to the lower of the two bands. The two C’s are plotted
in Fig. 10.

NUMBER OF ORBITALS IN A BAND

Consider a linear crystal constructed of an even number N of primitive
cells of lattice constant a. In order to count states we apply periodic boundary
conditions to the wavefunctions over the length of the crystal. The allowed
values of the electron wavevector k in the first Brillouin zone are given by (2):

(53)

We cut the series off at N"/L # "/a, for this is the zone boundary. The point
!N"/L # !"/a is not to be counted as an independent point because it is
connected by a reciprocal lattice vector with "/a. The total number of points is
exactly N, the number of primitive cells.

Each primitive cell contributes exactly one independent value of k
to each energy band. This result carries over into three dimensions. With
account taken of the two independent orientations of the electron spin, there

k # 0 ;   ! 

2"
L  ;   ! 

4"
L  ;  . . . ;  N"

L  .
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Figure 10 Ratio of the coefficients in #(x) # C(k) exp(ikx) " C(k ! G) exp[i(k ! G)x] as calcu-
lated near the boundary of the first Brillouin zone. One component dominates as we move away
from the boundary.
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crystals respond to applied fields as if endowed with negative or positive
charges, !e or "e, and herein lies the explanation of the negative and positive
values of the Hall coefficient.

NEARLY FREE ELECTRON MODEL

On the free electron model the allowed energy values are distributed es-
sentially continuously from zero to infinity. We saw in Chapter 6 that

(1)

where, for periodic boundary conditions over a cube of side L,

(2)

The free electron wavefunctions are of the form

(3)

they represent running waves and carry momentum 
The band structure of a crystal can often be explained by the nearly free

electron model for which the band electrons are treated as perturbed only
weakly by the periodic potential of the ion cores. This model answers almost
all the qualitative questions about the behavior of electrons in metals.

We know that Bragg reflection is a characteristic feature of wave propaga-
tion in crystals. Bragg reflection of electron waves in crystals is the cause of
energy gaps. (At Bragg reflection wavelike solutions of the Schrödinger equa-
tion do not exist, as in Fig. 2.) These energy gaps are of decisive significance in
determining whether a solid is an insulator or a conductor.

We explain physically the origin of energy gaps in the simple problem of a
linear solid of lattice constant a. The low energy portions of the band structure
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Figure 2 (a) Plot of energy # versus wavevector k for a free electron. (b) Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap Eg

shown is associated with the first Bragg reflection at k # $"/a; other gaps are found at higher 
energies at $n"/a, for integral values of n.
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where, for periodic boundary condi:ons over a cube of side L, 



Metals, Insulators, and Semiconductors

It is easy to show that the number 
of k values in each BZ is just N, the 
number of primi:ve unit cells in 
the sample.  Thus, each band can 
be occupied by 2N electrons due 
to their spin degeneracy.

A monovalent element with one 
atom per primitive cell has only 1 
valence electron per primitive cell 
and thus N electrons in the lowest 
energy band.  This band will only 
be half-filled.

E

kx

a
p

a
p-

E-

E+

Eg
EF

The Fermi energy is the energy 
dividing the occupied and 
unoccupied states, as shown for a 
monovalent element.



For reasons that will be explained more fully later:

• Metals are solids with incompletely filled energy bands

• Semiconductors and ℏ insulators have a completely filled or empty
bands and an energy gap separating the highest filled and lowest unfilled
band. Semiconductors have a small energy gap (Eg < 2.0 eV).

Metals, Insulators, and Semiconductors

are 2N independent orbitals in each energy band. If there is a single
atom of valence, one in each primitive cell, the band can be half filled with
electrons. If each atom contributes two valence electrons to the band, the
band can be exactly filled. If there are two atoms of valence, one in each prim-
itive cell, the band can also be exactly filled.

Metals and Insulators

If the valence electrons exactly fill one or more bands, leaving others
empty, the crystal will be an insulator. An external electric field will not cause
current flow in an insulator. (We suppose that the electric field is not strong
enough to disrupt the electronic structure.) Provided that a filled band is sepa-
rated by an energy gap from the next higher band, there is no continuous way
to change the total momentum of the electrons if every accessible state is
filled. Nothing changes when the field is applied. This is quite unlike the situa-
tion for free electrons for which k increases uniformly in a field (Chapter 6).

A crystal can be an insulator only if the number of valence electrons in a
primitive cell of the crystal is an even integer. (An exception must be made for
electrons in tightly bound inner shells which cannot be treated by band
theory.) If a crystal has an even number of valence electrons per primitive cell,
it is necessary to consider whether or not the bands overlap in energy. If the
bands overlap in energy, then instead of one filled band giving an insulator, we
can have two partly filled bands giving a metal (Fig. 11).

The alkali metals and the noble metals have one valence electron per
primitive cell, so that they have to be metals. The alkaline earth metals have
two valence electrons per primitive cell; they could be insulators, but the
bands overlap in energy to give metals, but not very good metals. Diamond,
silicon, and germanium each have two atoms of valence four, so that there are
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Figure 11 Occupied states and band structures giving (a) an insulator, (b) a metal or a semimetal
because of band overlap, and (c) a metal because of electron concentration. In (b) the overlap
need not occur along the same directions in the Brillouin zone. If the overlap is small, with rela-
tively few states involved, we speak of a semimetal.
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Problems

Suppose we want to exhibit the energy as a funcAon of k in the [100] direcAon
for a bcc laFce. Show the four lowest-lying bands in the empty laFce
approximaAon with their energies (000) at k = 0 and (kx00) along the kx axis in
the first zone. (For convenience, choose units such that ℏ2/2m = 1)

1.

2.

3.

Square la)ce, free electron energies. (a) Show for a simple square laFce (two
dimensions) that the kineAc energy of a free electron at a corner of the first zone
is higher than that of an electron at midpoint of a side face of the zone by a
factor of 2. (b) What is the corresponding factor for a simple cubic laFce (three
dimensions)? (c) What bearing might the result of (b) have on the conducAvity
of divalent metals?
Square lattice. Consider a square lattice in two dimensions with the crystal
potential

Apply the central equation to find approximately the energy gap at the corner
point (𝜋/a, 𝜋/a) of the Brillouin zone. It will suffice to solve a 2×2 determinantal
equation.

*5. Complex wavevectors in the energy gap. Find an expression for the imaginary
part of the wavevector in the energy gap at the boundary of the first Brillouin zone,
in the approximation that led to Eq. (46). Give the result for the Im(k) at the center
of the energy gap. The result for small Im(k) is

The form as plotted in Fig. 12 is of importance in the theory of Zener tunneling
from one band to another in the presence of a strong electric field.

6. Square lattice. Consider a square lattice in two dimensions with the crystal potential

Apply the central equation to find approximately the energy gap at the corner
point (!/a, !/a) of the Brillouin zone. It will suffice to solve a 2 ! 2 determinantal
equation.

U(x,y) " #4U cos(2!x/a) cos(2!y/a) .

(!2/2m)[Im(k)]2 ! 2mU
 

2/!2G2 .
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Figure 12 In the energy gap there exist solutions of the wave equation for complex values of the
wavevector. At the boundary of the first zone the real part of the wavevector is G. The imaginary
part of k in the gap is plotted in the approximation of two plane waves, for In an
infinite unbounded crystal the wavevector must be real, or else the amplitude will increase with-
out limit. But on a surface or at a junction there can exist solutions with complex wavevector.

U " 0.01 !2G2/2m.

1
2

*This problem is somewhat difficult.
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