Electrons in a Periodic Potential

A. Free Electron Gas (FEG): Model for simple
metals

Near Free Electron Model
Bloch Functions

Kronig-Penny Model
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Energy Bands and Energy Gaps in a
Periodic Potential
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If a very large number of atoms are
involved, as in the case of a real
solid, then the energy levels will lie
on a quasi- continuous scale and one
therefore speaks of energy bands.
The broadening of the band depends
on the overlap of the wavefunctions
concerned. Thus for the deep lying
levels the broadening is small, and
these ""core levels' retain their
atomic shell-like character even in
the solid. For the highest occupied
levels, on the other hand, the
broadening is so large that the s-, p-
and where present, d-levels merge
into a single band.



Free Electron Gas (FEG)

Why is condensed matter so transparent to conduction electrons?
The answer to the question contains two parts: (a) A conduction
electron is not deflected by ion cores arranged on a periodic lattice
because matter waves can propagate freely in a periodic structure.
(b) A conduction electron is scattered only infrequently by other
conduction electrons. This property is a consequence of the Pauli
exclusion principle.

By a free electron Fermi gas, we

Na* : shall mean a gas of free electrons
subject to the Pauli principle.

Na: 15%2522p®3s!  Na*: 1s22s522p®
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Free Electron Gas in One Dimension
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The boundary conditions are ¢,(0) = 0; ¢,,(L) = 0.
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whence the energy €, is given by
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In a linear solid the qguantum numbers of a conduction electron orbital are
n and m, where n is any positive integer and the magnetic quantum
number m, =1 1/2, according to spin orientation.



Fermi Energy and Fermi-Dirac Distribution

The Fermi energy ¢; is defined as the energy of the topmost filled level in
the ground state of the N electron system. With n = n we have in one

dimension:
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“*“om\'L ) " om 2L '

Fermi-Dirac distribution gives the probability that an orbital at energy €
will be occupied in an ideal electron gas in thermal equilibrium:
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Free Electron Gas in Three Dimension

The free-particle Schrodinger equation in three dimensions is

_h*(e* 9 9 _
om <ax2 + ayg + (922> d’k(r) — € ¢k<r>

If the electrons are confined to a cube of edge L, the wavefunction is
the standing wave

i, (r) = A sin (7rnx/L) sin (Wnyy/L) sin (7n.z/L)
where n,, n, n, are positive integers. The origin is at one corner of the cube.
Applying the periodic boundary condition for x, y, and z,

px + L,y z) =, y,z),

We then have a plane wavefunction: | . (1) = exp (ik * r)

provided that the components of the wavevector k satisfy

k.=0 ; iQ%T : i% ; . . . ,and similarly for k, and k,.



The energy €, of the orbital with wavevector k:
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€ = (k? + k; + k)

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space. The energy at the
surface of the sphere is the Fermi energy; the wavevectors at the Fermi
surface have a magnitude k;such that
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Density of States (DOS)

The density of states is
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Near Free Electron Model

Consider a linear solid of lattice g and put the magnitude of U aside
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By the periodicity alone, in 1D the Bragg reflections will occur at

_ 41 _
k = 3G = Enm/a

where G = 2mn/a is a reciprocal lattice vector and n is an integer.



Formation of Standing Waves

The wavefunctions at k = *m/a are not the traveling waves exp(imx/a) or
exp(-imtx/a) of free electrons. At these special values of k the

wavefunctions are made up of equal parts of waves traveling to the right
and to the left.

Two standing waves are formed from two traveling waves:

Y(+) = explimx/a) + exp(—imx/a) = 2 cos (wx/a) ;

Y(—) = expliTx/a) — exp(—imx/a) = 2i sin (wx/a) .
Both standing waves are composed of equal parts of right- and left-
directed traveling waves.

Two corresponding electron density are

p(+) = [P(+)|* o< cos* mx/a

p(—) = |(—)|? e sin® mx/a



Origin of Energy Gap

The two standing waves (+) and ((-) pile up electrons at different
regions, and therefore the two waves have different values of the

potential energy in the field of the ions of the lattice. This is the origin of
the energy gap.
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Magnitude of Energy Gap

Let’s assume the potential energy
of an electron in the crystal at point xis U(x) = U cos 2mx/a

The first-order energy difference between the two standing wave states is

Bo= | dev Iyl = Jp(-)P
0

—

=2 f dx U cos(2mx/a)(cos® mx/a — sin® my/a) = U = “energy gap”
In between the two energies there are
no allowed energies; i.e., an energy
gap exists. We can sketch these 1-D
results schematically:
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Bloch Theorem and Bloch Wavefunctions

In the independent-electron approximation, the time-independent
Schrodinger equation for an electron in a periodic potential is:

2
{—hV2+U(?)}//:EW
2m

where the potential energy is invariant under a lattice translation
vector T:

UGF+T)=U(F) and T =ud+vb+we

Bloch showed that the solutions to the SE are the product of a
plane wave and a function with the periodicity of the lattice:

Vi (7) = Uur (f)eik'f

where u (F+T)=u_(7)



Bloch Theorem in 1D

Wl; (F"‘T) _ M,; (F_I_T)ei/;-feil;j" _ M—(F)eik.feik.T _ w F)eﬂ;f

orjust: y, (F+T) =y (F)e"”

Consider a 1D case, N identical lattice points around a circular ring, each

separated by a distance a:

condition:

w(x+ Na)=y(x)

The ring model fulfills the periodic boundary

The symmetry of the ring implies that we can

find a solution to the wave equation:

y(x+a)=Cy(x)



If we apply this translation N times we will return to the initial atom
position:

v (x+Na)=C"y(x)=y(x)

Thisrequires CN =1 or (CY=e*™ n=0,+1,+2,...

so (=" =M Bloch wavevector: j — 277
Na
Now we can rewrite
ika
y(x+a)=Cy(x)=e"w(x)
T

It can be generalizedto3D: (7 + T)= W, (’7)eil€.

v (F)=u (F)e"”




Real part of v

Bloch Wavefunctions

v (F) = u, (F)e™”
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This result gives evidence to
support the nearly-free electron

approximation, in which the

periodic potential is assumed to
have a very small effect on the
plane-wave character of a free
electron wavefunction. It also
explains why the free-electron gas

model is so successful for the

simple metals.



Wave Equation of Electron in 1D Lattice

Let’s assume the periodic potential energy of an electron in a 1D lattice of g at
point x is U(x+a) = U(x), so U(x) can be expressed by

Ulx) = EG: Uc ¢“* | and the wave equation is

(iﬁ + U<x>> i) = ( DU ) ) = eyls)

Zm

The wavefunction (x) may be expressed as a Fourier series summed over all
values of the wavevector permitted by the boundary conditions, so that

= Ckk)e™ | k=2mn/L
k

The kinetic energy term is

1 . d 2 . ﬁz d2 2 lkx .
P¢<> %( Zﬁdx) la) = = 2m 2 ZmEkC ’

and the potential energy term is (E U eti> Ulx) =3 > Und@Ck) e .
G G k



The wave equation is obtained as the sum:

E h K2C (k) ™ +EE U.C k01 = ¢S Ck) o *

2m k

The central equation:

A —€)Ck)+DUCk—G)=0 .| A =8r%"2m .
G

.k0_2a_7T .ko .k0+ 26177- .k0+ %:T
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k, in units 27/L



Restatement of Bloch Theorem

The given wavefunction: y,(x) = > C(k — G) &k~ |
G

which may be rearranged as

Y (x) = (% Clk —G) eicx> e =My (x) , with ux) =D, Clk — G)e .

G

SINCe ) = £ T), 0 Yulx+ T) = Py(x) €T

The quantity k enters in the conservation laws that govern collision
processes in crystals. (The conservation laws are really selection rules for
transitions.) Thus hk is called the crystal momentum of an electron. If an
electron k absorbs in a collision a phonon of wavevector q, the selection
rule is k + g = k’ + G. In this process the electron is scattered from a state k
to a state k', with G a reciprocal lattice vector. Any arbitrariness in labeling
the Bloch functions can be absorbed in the G without changing the
physics of the process.



Consequence of Bloch Theorem

From a knowledge of the dispersion relation, we can calculate the
propagation speed (group velocity) of a wave pulse :

o d _ _
group velocity in 1D: vg:d_(Z and in3D:  ¥,(k) =V, w(k)

Similarly, it can be shown using Bloch’s theorem that the propagation
speed of an electron wavepacket in a periodic crystal can be calculated
from a knowledge of the energy band along that direction in reciprocal
space:

electron velocity in 1D: :da) —ldi in 3D: vg(}?);

= V_E(k
S dk hdk p EGK)

1
h
This means that an electron (with a specified wavevector) moves through a

perfect periodic lattice with a constant velocity; i.e., it moves without
being scattered or in any way having its velocity affected.




Periodic Potential from Atomic Orbitals

Electrostatic potential energy in a crystalline solid along a line passing
through a line of atoms:
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This 1D model can be approximated with a

cosine or square potential: 2 e
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The Kronig-Penney Model

- . hZ dzl//
Solve the SE in each region of space: |- —— +UX) |y =Ey
2m dx
A U
Uo
Ux)=0, O<x<a
=U, -b<x<0
X
-b 0 aatb
2a+b 2(a+b)
IKX —IKX h2K2
O<x<a w,(x)=Ae™ + Be E= ™
hZQZ
-b<x<0 v, (x)=Ce%” +De™® U,-E=




Boundary Conditions and Bloch Theorem

The solutions of the SE require that the wave-
function and its derivative be continuous across
the potential boundaries. Thus, at the two v, (x)=Ce? + De "
boundaries (which are infinitely repeated):

v, (x)=Ae™ + Be™™

X

0 A+B=C+D (1) ix(A-B)=0(C-D) (2)

X=a Ae™ + Be™ =y, (a)

Now using Bloch’s theorem for a arh)
periodic potential with period a+b:  ¥u (@)=, (=b)e

Now we can write the boundary conditions at x = a:

Ae™ + Be ™ = (Ce_Qb + De? )e”‘ (a+b) (3)

iK(Ae™ —Be™™)=Q(Ce™® — De®")e™ ™ (4)



The four simultaneous equations (1-4) can be written compactly in matrix form

Since the values of a and b are inputs to the model, and Q depends on U, and
the energy E, we can solve this system of equations to find the energy E at
any specified value of the Bloch wavevector k.

Results of the Kronig-Penney Model

1
1K
eiKa

IKa

1Ke
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—IK
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-1
-0

_ o b pik(a+b)

~0 o0 ik (a+h)

-1
0

_ o0 pik(a+h)

0 o Q0 pik(a+h)

Taking the determinant and setting it equal to zero gives:

|

Qz 2
20k

O S A

D

jsin(ica)sinh(Qb)+ cos(xa )cosh(Qb) = cos|k(a + b)]




6-Function Approximation

[Q;é K Jsin(m)sinh(Qb)Jr cos(xa )cosh(Qb) = cos|k(a + b)]
K

The result is simplified if we represent the potential by the periodic delta
function obtained when we pass to the limit b =0 and U, = == in such a way

that Q?ba/2 = P, a finite quantity. In this limit Q >> k and Qb << 1. Then the
above equation reduces to

(P/ka) sinka + coska = coska

with P =3m/2,

€
(P/Ka) sin Ka + cos Ka

€, in units #27%/2ma>
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Brillouin Zone

A Brillouin zone is defined as a Wigner-Seitz cell in the
reciprocal lattice.
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Brillouin Zone in 1D and 2D

The central cell in the reciprocal lattice is of special
importance in the theory of solids, and we call it the first
Brillouin zone. The first Brillouin zone is the smallest volume
entirely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal lattice vectors drawn from the origin.

T >o e
‘ Reciprocal lattice \ B \ \A\o



All Brillouin Zones: Square Lattice




At the Zone Boundary

B=GGP: (k-GP=(GG-GP=GGP,
so that at the zone boundary the kinetic energy of the two component waves
k=% G/2 are equal.

A —€e)Ck)+ D ULk —-G)=0 (A —€)C(GG) + UC(—3G) =0
- A—€)C(—5G)+ UCGG)=0

The energy € satisfies

A—€ U
U A— €

whence <)\—€>2:U2 : € = iU:h—2<;G>2iU .




Near a Zone Boundary

We use the same two-component approximation, now with a wavefunction

of the form . .
p(x) = C(k) e + Clk — G) &+ €

(A, — €)Ck) + UCk — G) =0 ;
A —€)Ck — G) + UCK) =0 |

We solve

=5\ A E Ao — A+ U2, ‘

and each root describes an energy band below.

Zone boundary I

Let

=k —5G

= (#2m)(;G* +K?) * [4A(R*K*/2m) + U*]"”
=~ (A¥2m)GG? + K?) = U[1 + 20U (h2K*/2m)]




Different Representations of E(k)

If we apply periodic boundary
conditions to the 1-D crystal, the
energy bands are invariant under a
reciprocal lattice translation vector:

E(k +G)=E(k)

The bands can be graphically displayed
in either the (i) extended zone

scheme; (ii) periodic zone scheme; or %

(iii) reduced zone scheme.
(i)
(iif)

(i)
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extended zone scheme: plot E(k) from k = 0 through all possible BZs
periodic zone scheme: redraw E(k) in each zone and superimpose

reduced zone scheme: all states with |k| > 7t/a are translated back into



Empty Lattice Approximation

Actual band structures are usually exhibited as plots of energy versus
wavevector in the first Brillouin zone. When wavevectors happen to be given
outside the first zone, they are carried back into the first zone by subtracting
a suitable reciprocal lattice vector. Such a translation can always be found.

elk,k, k) = (h¥2m)(k + G)?
= (F°2m)[(k, + G, + (k, + G, + (k. + G.)’] ,

with k in the first zone and G allowed to run over the
appropriate reciprocal lattice points.

Example: Low-lying free electron bands of a
simple cubic lattice plotted along the
k. in the first Brillouin zone.

Band Ga/2 €(000) €(k,00)

1 000 0 k2

2.3 100,100 (27/a)* (k, + 2m/a)?

4,56,7 010,010,001,001 (27/a)* k2 + (27/a)?

8,9,10,11 110,101,110,101 2(2m/a)? (k, + 2m/a)?* + (27/a)*
12,13,14,15 110,101,110,101 2(27r/a)? (k, — 2m/a)* + (2m/a)*
16,17,18,19 011,011,011,011 2(2m/a)? k2 + 2(2m/a)?




Number of Orbitals in a Band

ﬁZ
om

(k% + k2 + k2)

For free electron model: ¢, =

where, for periodic boundary conditions over a cube of side L,
0. 2 4
kx,ky,kz—(), iL : iL :
At the 1BZ boundary k = 1t/a, so the total allowed k’s are

9r  ,4m  Nm

L. L L

Each primitive cell contributes exactly one independent value of k to
each energy band. This result carries over into three dimensions. With
account taken of the two independent orientations of the electron spin,
there are 2N independent orbitals in each energy band. If there is a single atom
of valence, one in each primitive cell, the band can be half filled with electrons. If
each atom contributes two valence electrons to the band, the band can be exactly

filled. If there are two atoms of valence one in each primitive cell, the band can
also be exactly filled.



Metals, Insulators, and Semiconductors

It is easy to show that the number
of k values in each BZ is just N, the
number of primitive unit cells in
the sample. Thus, each band can
be occupied by 2N electrons due |
to their spin degeneracy. ‘

A monovalent element with one
atom per primitive cell has only 1
valence electron per primitive cell
and thus N electrons in the lowest
energy band. This band will only
be half-filled.
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The Fermi energy is the energy "L
dividing the occupied and

b

unoccupied states, as shown for a
monovalent element. —=



Metals, Insulators, and Semiconductors

For reasons that will be explained more fully later:

e Metals are solids with incompletely filled energy bands

e Semiconductors and h insulators have a completely filled or empty
bands and an energy gap separating the highest filled and lowest unfilled
band. Semiconductors have a small energy gap (E, < 2.0 eV).
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Problems

1. Square lattice, free electron energies. (a) Show for a simple square lattice (two
dimensions) that the kinetic energy of a free electron at a corner of the first zone
is higher than that of an electron at midpoint of a side face of the zone by a
factor of 2. (b) What is the corresponding factor for a simple cubic lattice (three
dimensions)? (c) What bearing might the result of (b) have on the conductivity
of divalent metals?

2. Square lattice. Consider a square lattice in two dimensions with the crystal
potential

Ulx,y) = —4U cos(2mx/a) cos(2my/a) .

Apply the central equation to find approximately the energy gap at the corner

point (rr/a, m/a) of the Brillouin zone. It will suffice to solve a 2x2 determinantal
equation.

3. Suppose we want to exhibit the energy as a function of k in the [100] direction
for a bcc lattice. Show the four lowest-lying bands in the empty lattice
approximation with their energies (000) at k = 0 and (k,00) along the k, axis in
the first zone. (For convenience, choose units such that 72/2m = 1)



